Center of Excellence for the Synthesis and Processing of Advanced Materials: Review – June 12, 2003

"Defect Structures and Properties in Rare-Earth-Ba-Cu-O Cuprate Superconductors"

David O. Welch Brookhaven National Laboratory Project Coordinator

A Project of the Center of Excellence for the Synthesis and Processing of Advanced Materials:

"Defect Structures and Properties in Rare-Earth- Ba-Cu-O Cuprate Superconductors"

Participating Institutions:

Ames Laboratory, Argonne National Laboratory,

Brookhaven National Laboratory, Oak Ridge Laboratory,

Los Alamos National Laboratory, and Sandia National Laboratory

Project Coordinator:

David O. Welch, BNL

CSP Review: "Defect Structures... in Cuprate Superconductors"

This project involves groups funded by BES and/or the "Superconductivity for Electric Systems" program,

Office of Energy Efficiency and Renewable Energy.

New Feature:

Collaboration with AFOSR Coated Conductor MURI

 "The key to better engineering lies in the knowledge of imperfections in materials"

quoted from an advertisement of a professorship in the Materials Science and Technology Department, Faculty of Applied Sciences,

TU Delft, Physics Today, February 2001

 "Like people, materials are interesting because of their faults."

Sir Charles Frank

Active Collaborative Projects

- Basic Properties of RE-123 Compounds
 - Substitution Effects on Superconductivity
 - Systematics of Thermophysical Properties

Ames: McCallum, Kramer ANL: Veal

BNL: Welch, Su (Caltech)

 Defect Structures and Critical Currents in YBCO Coated Conductors

ANL: Miller, Veal ORNL: Goyal, Christen, Feenstra, Lee

BNL: Suenaga, Welch LANL: Holesinger, Foltyn

SNL: Clem, Siegal

"Collaborations" (cont.)

Grain boundaries, in YBCO

ANL: Veal, Paulikas, Berghuis, Claus, Gray

BNL: Suenaga, Welch, Su, Zhu

ORNL: Christen, Goyal

LANL: Holesinger

Flux Pinning

BNL: Suenaga, Welch

ORNL: Christen, Feenstra

LANL: Foltyn, Holesinger

Activities

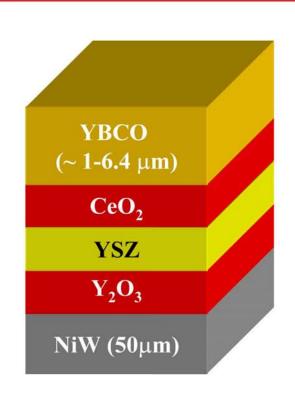
- "Caucuses" at Fall MRS (November 2002); EERE "Superconductivity for Electric Systems" Program Wire Development Workshop (January 2003); EE Superconductivity Peer Review (July 2003).
- Workshop on "Zoology and Ecology" of Defects and Nanoscale Structure in 123-Phase Superconductors, BNL, October 2003
- Review article on state-of-the-art

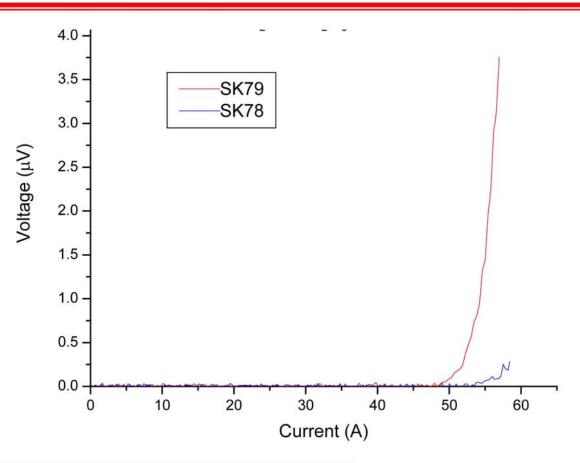
Some Research Highlights

Coated Conductors

■ Grain Boundaries

■ Flux Pinning


Coated Conductors


 Coated Conductor Architecture: Buffer Layers and Defects
 ORNL, LANL, SNL, BNL

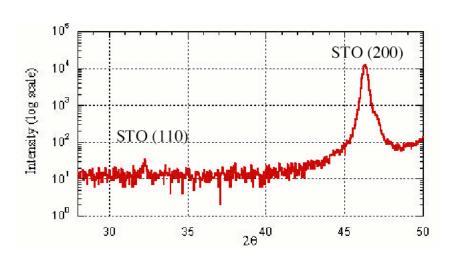
- The BaF₂ process for ex-situ YBCO growth ANL, BNL, ORNL, SNL, LANL
 - Growth and Characterization
 - Thickness Dependence of J_c

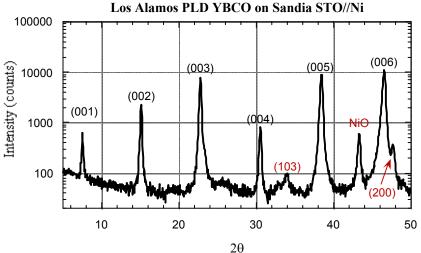
PLD YBCO films on buffered Ni-W substrates

Sample No. SK78, 5 mm wide

YBCO Thickness: 1.00 μm

 $I_c = 59A$ (self-field, 77K), I_c /width = 118 A/cm; $J_c = 1.18$ MA/cm²



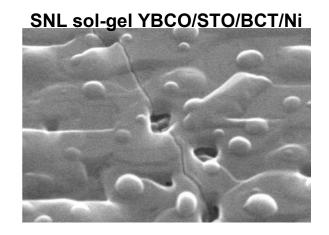

Stress-Induced Nanocracks in YBCO Coated-Conductors Due to Oxygen Diffusion Through STO Buffer Layers

M. Siegal, P. Clem and J. Dawley (Sandia)

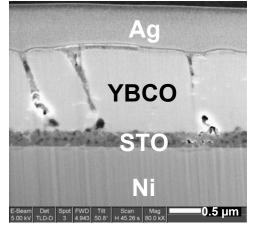
S. Folytn and T. Holesinger (Los Alamos)

Goal: grow thick YBCO films on sol-gel buffered metal tapes

Highly-oriented STO grows easily on Ba_{0.2}Ca_{0.8}TiO₃//Ni(100) templates.

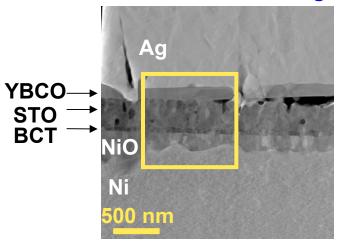

1.3 µm thick YBCO by PLD (LANL) on STO/BCT/Ni by sol-gel (SNL) note presence of NiO!

Great c-axis orientation, T_c = 87 K, however J_c(75K) < 1000 A/cm². WHY?

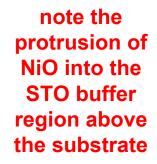

Nanocracking, Oxygen Diffusion, Stress....

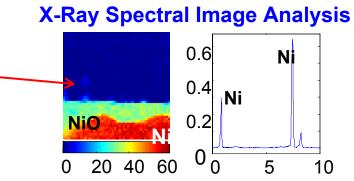
Nanocracking (from PLD or sol-gel)

greatly limits supercurrent!



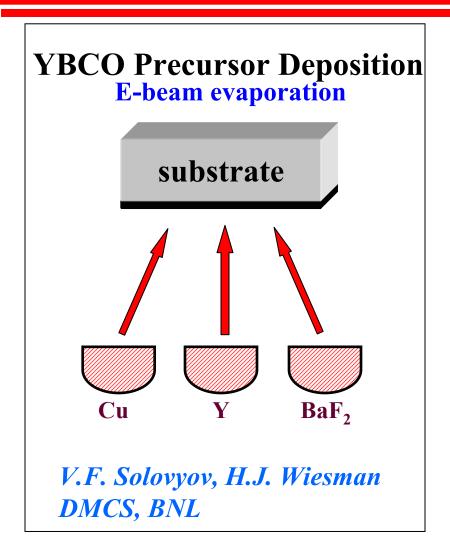
LANL PLD YBCO/STO/BCT/Ni

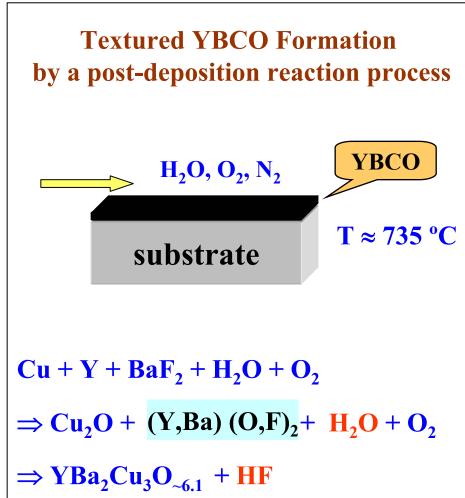

What causes nanocracking?


Dark-field STEM image

Significant NiO at buffer/Ni interface.

Resulting YBCO layer has nanocracks.

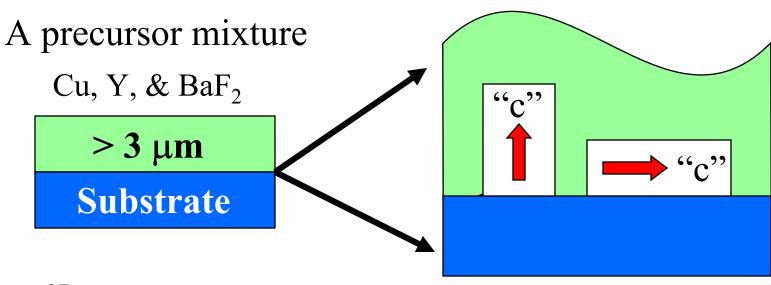




Different thermal expansion coefficients

STRESS

YBCO Thick Film Synthesis



Brookhaven Science Associates U.S. Department of Energy

Nucleation of Epitaxial YBCO

O How does an oxide epitaxially nucleate and grow from a buried interface at the substrate surface?

Depositinavé no SEiterropy Associates Brooks a Departine ne of Sanonig yes

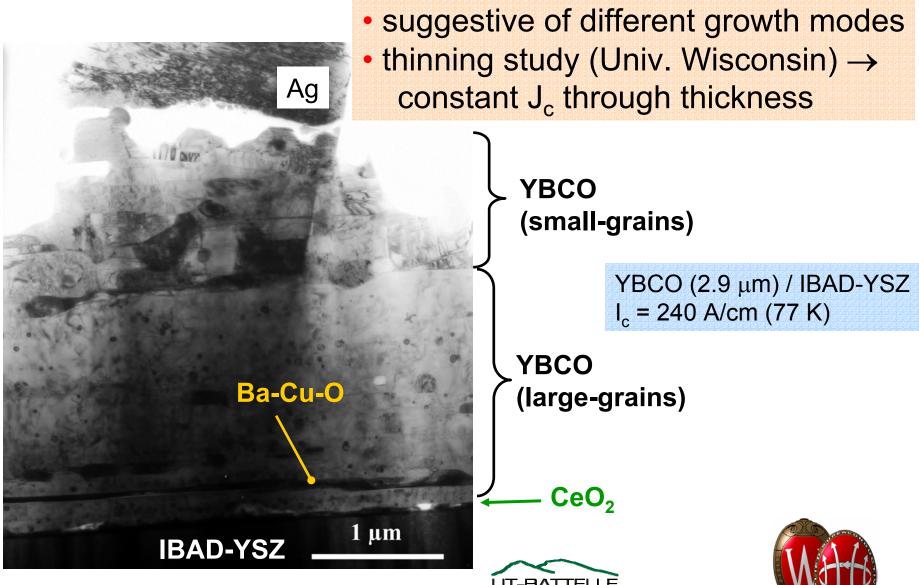
Thickness dependence of J_c in YBCO coated conductors

Ron Feenstra, A. A. Gapud, D. K. Christen, E. D. Specht, A. Goyal, Oak Ridge National Laboratory

D. M. Feldmann, D. C. Larbalestier, *University of Wisconsin*

T. G. Holesinger, P. N. Arendt, Los Alamos National Laboratory

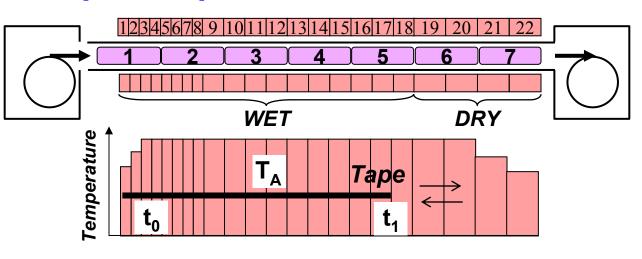
Collaborative research is performed to determine intrinsic and materials effects on J_c(d)


- > YBCO films grown at ORNL (BaF₂ ex situ process)
- through-thickness J_c (stepwise thinning) measured at UW
- microstructure analyzed at LANL

- J_c(d) (on normalized scale) is independent of substrate: RABiTS, IBAD-YSZ, crystal
- $J_c(d) \propto 1/d^{1/2}$
 - qualitatively consistent with
 2D collective pinning model
- similar J_c(d) observed for PLD

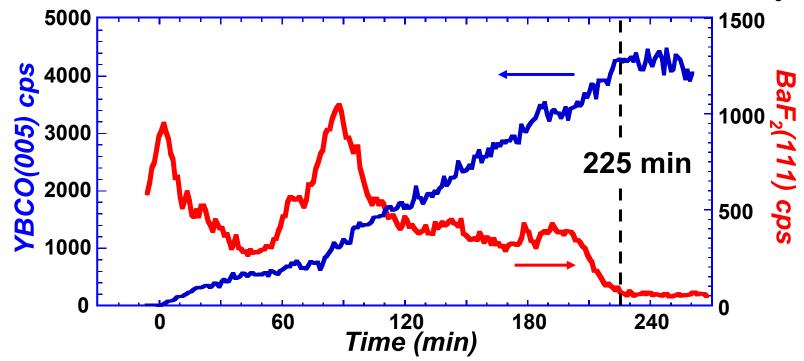
TEM reveals bi-layer-like structure in thick YBCO

Reel-to-reel characterization of YBCO coated conductors: Formation of YBCO from "BaF₂" precursor


Pl's: ANL – V. Maroni ORNL – D. F. Lee

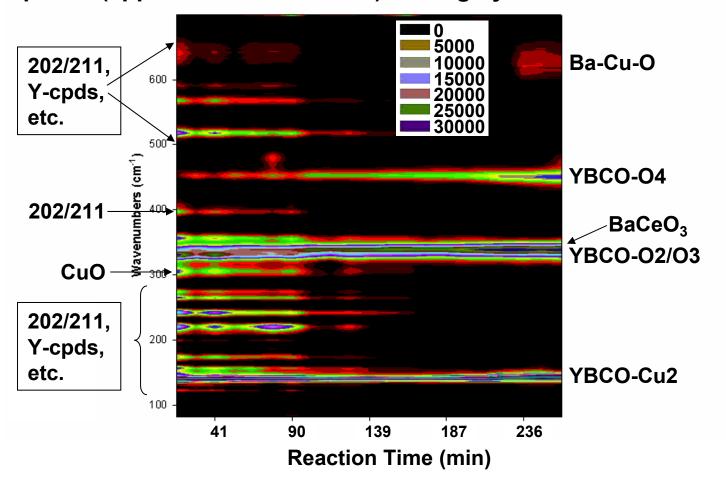
Objectives: To study ex-situ YBCO formation using complementary R-R XRD and Raman techniques.

To investigate the possibility of using these techniques for in-situ monitoring.

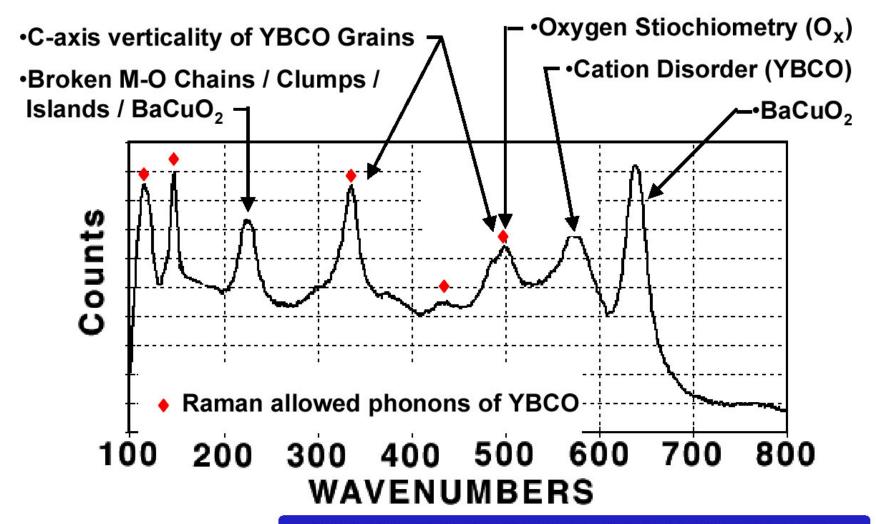

Sample Preparation

- RABiTS tape with "BaF₂" precursor is pulled into furnace with a set profile.
- Once the front of the tape has reached time t₁, the sample is re-wound onto cold payout reel at 2m/min.
- Sample consists of rampup section and section in which anneal time at T_A varies from zero to t₁- t₀

Reel-to-Reel XRD has been shown to be invaluable In aiding the optimization of processing conditions


- Predominance of c-axis YBCO growth as well as extent of reaction can be monitored.
- 1 μm-thick YBCO shows disappearance of BaF₂(111) and leveling of YBCO(005) at roughly 225 min.
- YBCO (00I) intensity has been found to be closely associated with J_c.

• <u>However</u>, it is difficult to distinguish and track the presence of other phases that participate in the YBCO formation process.

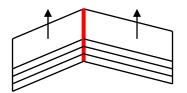

Reel-to-Reel Raman is a complementary technique that can provide information not available from XRD

- R-R Raman shows both the phases participating in the reaction (LHS) as well as the products (RHS) as a function of annealing time.
- Raman scans on the same 1 μ m-thick tape show that YBCO formation is completed (appearance of Ba-Cu-O) at roughly 230 min.

Raman Spectroscopy Reveals Many Details about Composition and Microstructure of YBCO Films

2001 Annual Peer Review--Superconductivity Program for Electric Systems

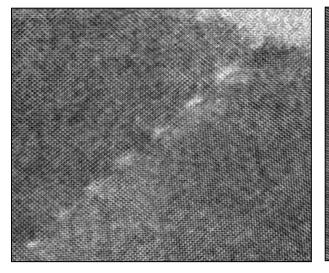
Grain Boundaries


■ Space Charges, Stress, Doping, Oxygenation

ANL, BNL, ORNL, LANL

Improved interfacial superconductivity via Ca doping

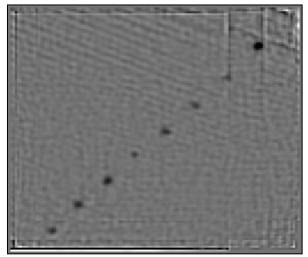
 $Y_{1-x}Ca_xBa_2Cu_3O_7$

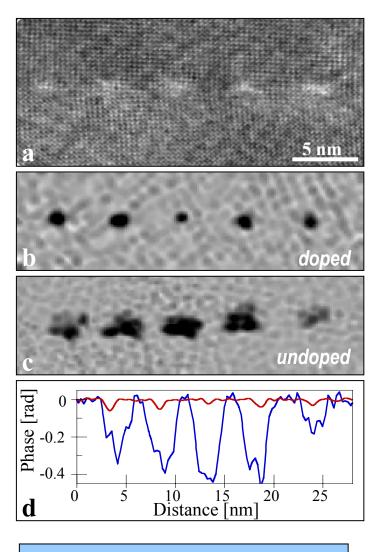


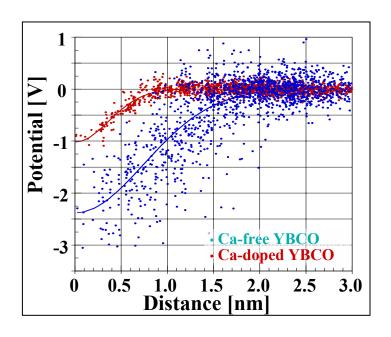
4° [001] Tilt Boundary Samples from C. Joos, Göttingen Univ.

film-GB angle	${ m J}_{gb}^{ m GB}$	J_c	$\overline{{ m J}_{gb}^{ m GB}/{ m J}_c}$
	$[10^6 { m Acm}^{-2}]$	$[10^6 { m Acm^{-2}}]$	
undoped 8° [001]	7-11	30-38	0.26
doped 8° [001]	11-21	30-35	0.49
$\overline{\text{undoped } 4^{\circ} [001]}$	10-15	25-33	0.43
doped 4° [001]	6-9	10-16	0.58

Critical current densities at 4.2 K for doped and undoped films calculated from magneto-optical measurements ($B_{exp} \approx 100 \,\mathrm{mT}$).


HREM

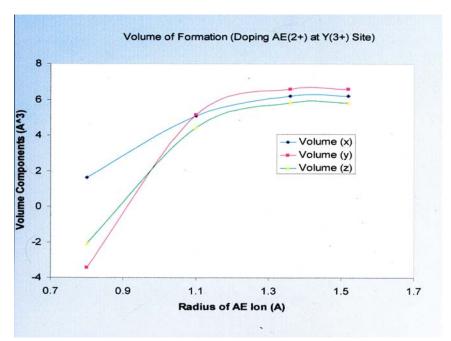

hologram



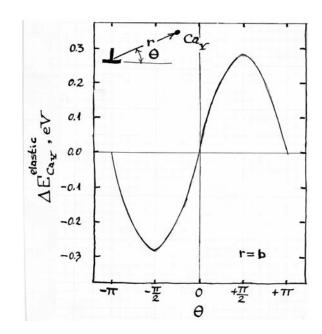
phase

Electrostatic potential variation: YBCO GB w/o Ca doping

Projected potential around the GB core

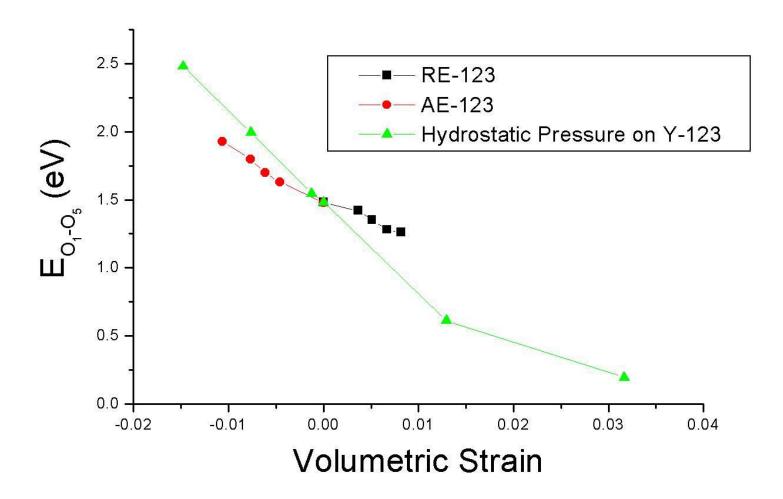

Phase shift from holography

Theoretical Studies

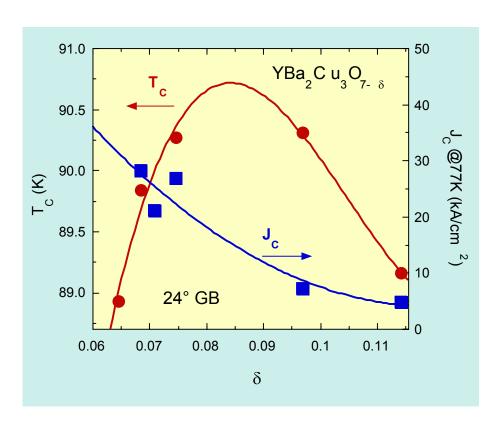

Stress-Field Interaction with Defects: $\mathsf{E}_{\mathsf{defect}}(\sigma) \cong \mathbf{E}_{o} - \sum\limits_{i,j} \sigma_{ij} \mathbf{v}_{ij}$ (E_{o} , V_{ii} computed by atomistic simulation.)

Volume of Formation (Doping AE(2+) at Y(3+) Site)

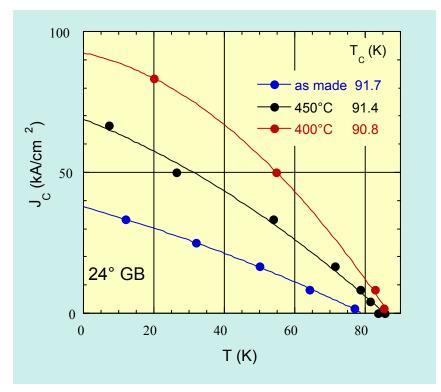
Ca elastic interaction with a dislocation



Brookhaven Science Associates U.S. Department of Energy

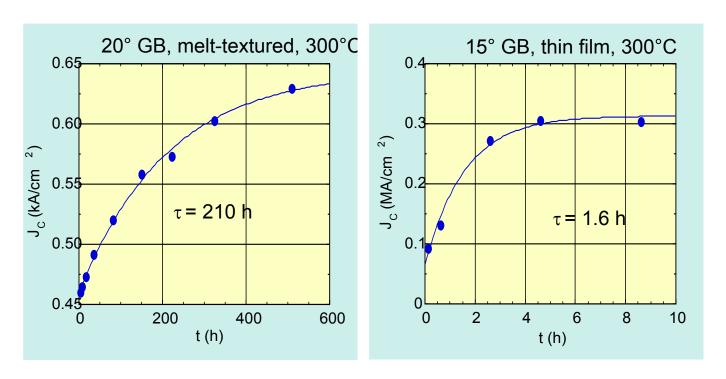


Frenkel Pair Formation Energy for 123 Phase



Oxygenation of grain boundaries

As the oxygen concentration is increased, the film $T_{\rm C}$ goes through a maximum at optimum doping. However, $J_{\rm C}$ continues to increase in the overdoped regime. Results were obtained from a 24° grain boundary.



Improvement in J_C is observed at all temperatures when the level of oxidation is increased. Listed are oxygenation temperatures and T_C values. Reducing the annealing temperature (e.g., to 400 C in O_2) increases the oxygen stoichiometry. A smaller enhancement in J_C is observed as the GB angle becomes smaller.

Oxygenation of thin film GBs is much faster than bulk GBs

Bulk grain boundary

Thin film grain boundary

Samples were initially equilibrated at 450° in flowing O_2 . They were then oxygenated at 300°C for the indicated times. $J_C(t) = J_{C0} + \Delta J_C(1-\exp(-t/\tau))$

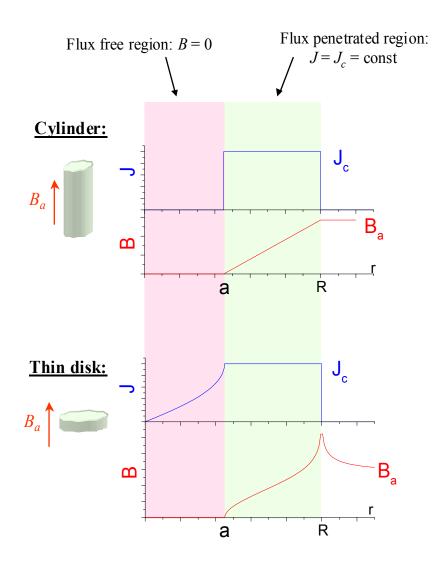
• Oxygenation of thin-film GBs is ~ 100 times faster than bulk GBs

Flux Pinning

■ What pins the flux?
ANL, BNL, LANL

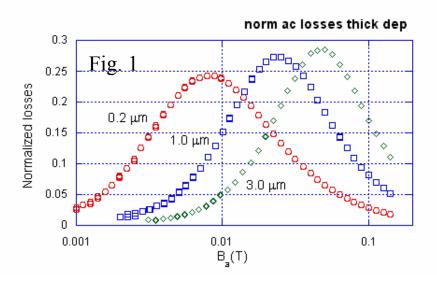
Improving flux pinning Ames, LANL

ac losses in thin filmsAmes, BNL, LANL


ac losses in circular disks of YBCO films in perpendicular magnetic fields

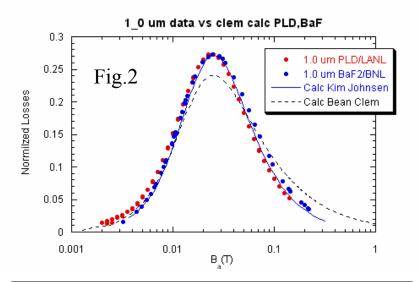
M. Suenaga/BNL

S. R. Foltyn/LANL


The figure illustrates the difference in the magnetic field penetration into a long cylinder and a thin disk. This difference results in significant differences in the properties of superconductors in magnetic fields such as ac losses.

The Bean model

ac losses in thin circular disks of YBCO in perp. magn. fields



Normalized losses = $[Q(B_a)/(8R/3\pi d)]/(\pi B_a^2/\mu_0)$

Fig. 1. Thickness dependence of the losses

Fig. 2. Comparisons of theoretical predictions based on the use of the field independent and dependent critical current densities for 1 μ m thick films.

YBCO films on SrTiO₃ by (1) pulsed laser deposition by S. R. Foltyn/LANL and (2) BaF₂ process by V. F. Solovyov/BNL, and measured by M. Suenaga/BNL

Conclusions:

- 1) The low field losses are determined by $1/(J_c d)^2$ rather than $1/J_c$ for bulk where d is the thickness of the film.
- 2) The use of the field dependent $J_c(B)$ is necessary for calculating the losses for moderate to high magnetic fields.

New Activities in the Final Year Before "Graduation"

Quantitative description of nanoscale structure

- A workshop to consolidate what we know and what we don't about the "zoology and ecology" of defects and nanostructure in RE-123 [at BNL, October 2003]
- A review article to summarize where we stand on defects and nanostructures in RE-123

